Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Hepatol ; 80(2): 194-208, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38438948

RESUMEN

BACKGROUND & AIMS: Hepatocyte apoptosis, a well-defined form of cell death in non-alcoholic steatohepatitis (NASH), is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in NASH remain largely unclear. We explored the anti-apoptotic effect of hepatocyte CD1d in NASH. METHODS: Hepatocyte CD1d expression was analyzed in patients with NASH and mouse models. Hepatocyte-specific gene overexpression or knockdown and anti-CD1d crosslinking were used to investigate the anti-apoptotic effect of hepatocyte CD1d on lipotoxicity-, Fas-, and concanavalin (ConA)-mediated liver injuries. A high-fat diet, a methionine-choline-deficient diet, a Fas agonist, and ConA were used to induce lipotoxic and/or apoptotic liver injuries. Palmitic acid was used to mimic lipotoxicity-induced apoptosis in vitro. RESULTS: We identified a dramatic decrease in CD1d expression in hepatocytes of patients with NASH and mouse models. Hepatocyte-specific CD1d overexpression and knockdown experiments collectively demonstrated that hepatocyte CD1d protected against hepatocyte apoptosis and alleviated hepatic inflammation and injuries in NASH mice. Furthermore, decreased JAK2-STAT3 signaling was observed in NASH patient livers. Mechanistically, anti-CD1d crosslinking on hepatocytes induced tyrosine phosphorylation of the CD1d cytoplasmic tail, leading to the recruitment and phosphorylation of JAK2. Phosphorylated JAK2 activated STAT3 and subsequently reduced apoptosis in hepatocytes, which was associated with an increase in anti-apoptotic effectors (Bcl-xL and Mcl-1) and a decrease in pro-apoptotic effectors (cleaved-caspase 3/7). Moreover, anti-CD1d crosslinking effectively protected against Fas- or ConA-mediated hepatocyte apoptosis and liver injury in mice. CONCLUSIONS: Our study uncovered a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 axis in hepatocytes that conferred hepatoprotection and highlighted the potential of hepatocyte CD1d-directed therapy for liver injury and fibrosis in NASH, as well as in other liver diseases associated with hepatocyte apoptosis. IMPACT AND IMPLICATIONS: Excessive and/or sustained hepatocyte apoptosis is critical in driving liver inflammation and injury. The mechanisms underlying the regulation of hepatocyte apoptosis in non-alcoholic steatohepatitis (NASH) remain largely unclear. Here, we found that CD1d expression in hepatocytes substantially decreases and negatively correlates with the severity of liver injury in patients with NASH. We further revealed a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 signaling axis in hepatocytes, which confers significant protection against liver injury in NASH and acute liver diseases. Thus, hepatocyte CD1d-targeted therapy could be a promising strategy to manipulate liver injury in both NASH and other hepatocyte apoptosis-related liver diseases.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Apoptosis , Concanavalina A , Modelos Animales de Enfermedad , Hepatocitos , Inflamación
2.
JCI Insight ; 9(7)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441961

RESUMEN

Programmed cell death protein 1 (PD-1), a coinhibitory T cell checkpoint, is also expressed on macrophages in pathogen- or tumor-driven chronic inflammation. Increasing evidence underscores the importance of PD-1 on macrophages for dampening immune responses. However, the mechanism governing PD-1 expression in macrophages in chronic inflammation remains largely unknown. TGF-ß1 is abundant within chronic inflammatory microenvironments. Here, based on public databases, significantly positive correlations between PDCD1 and TGFB1 gene expression were observed in most human tumors. Of note, among immune infiltrates, macrophages as the predominant infiltrate expressed higher PDCD1 and TGFBR1/TGFBR2 genes. MC38 colon cancer and Schistosoma japonicum infection were used as experimental models for chronic inflammation. PD-1hi macrophages from chronic inflammatory tissues displayed an immunoregulatory pattern and expressed a higher level of TGF-ß receptors. Either TGF-ß1-neutralizing antibody administration or macrophage-specific Tgfbr1 knockdown largely reduced PD-1 expression on macrophages in animal models. We further demonstrated that TGF-ß1 directly induced PD-1 expression on macrophages. Mechanistically, TGF-ß1-induced PD-1 expression on macrophages was dependent on SMAD3 and STAT3, which formed a complex at the Pdcd1 promoter. Collectively, our study shows that macrophages adapt to chronic inflammation through TGF-ß1-triggered cooperative SMAD3/STAT3 signaling that induces PD-1 expression and modulates macrophage function.


Asunto(s)
Receptor de Muerte Celular Programada 1 , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Proteína smad3/metabolismo , Factor de Transcripción STAT3/metabolismo
3.
Shock ; 61(4): 611-619, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37878486

RESUMEN

ABSTRACT: Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Macrophages play important roles in the inflammatory process of sepsis by secreting chemokines. Chemokine (CC-motif) ligand 2 (CCL-2) is one of the main proinflammatory chemokines secreted by macrophages that plays a critical role in the recruitment of more monocytes and macrophages to the sites of injury in sepsis, but the mechanisms that regulate CCL-2 expression in macrophages during sepsis are still unknown. In the present study, by using the LPS-induced endotoxemia model, we found that LPS induced the expression of microRNA (miR)-155 and CCL-2 in endotoxemic mice and RAW264.7 cells. MiR-155 mimics or miR-155 inhibitor treatment experiment suggested that miR-155 was sufficient to increase LPS-induced CCL-2 expression in macrophages, but miR-155 was not the only factor promoting CCL-2 expression. We further demonstrated that miR-155-induced increase of CCL-2 promoted chemotaxis of additional macrophages, which subsequently enhanced lung injury in endotoxemic mice. Serum/glucocorticoid regulated kinase family member 3 (SGK3), a potential target of miR-155, was identified by RNA sequencing and predicted by TargetScan and miRDB. We further confirmed miR-155 regulated SGK3 to increase LPS-induced CCL-2 by using miR-155 mimics and SGK3 overexpression. Thus, our study demonstrates that miR-155 targets SGK3 to increase LPS-induced CCL-2 expression in macrophages, which promotes macrophage chemotaxis and enhances organs injury during endotoxemia. Our study contributed to a better understanding of the mechanisms underlying the inflammatory response during sepsis.


Asunto(s)
Endotoxemia , MicroARNs , Sepsis , Humanos , MicroARNs/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Endotoxemia/genética , Endotoxemia/metabolismo , Macrófagos/metabolismo , Quimiocinas/metabolismo , Sepsis/metabolismo
4.
J Fluoresc ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38055141

RESUMEN

The hydrothermal reactions of bis{6-{5-methyl-1 H,7 H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one}}methane (L) and Zn(NO3)2·6H2O at 180 ℃ afforded a novel Zn(II) coordination polymer (CP), that is, {[Zn2(L)(µ2-O)2]·3H2O}n (1), which further characterized via Single crystal X-ray diffraction (SCXRD), elemental analysis (EA), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA). Besides, this CP reveals strong luminescence that may be caused by the charge transfer within the ligand. In biological study, the new compound was evaluated for its protective effect on chondrocytes. This compound significantly up-regulated GPX4 and down-regulated HO-1 mRNA levels, thereby inhibiting iron death in chondrocytes.

5.
PLoS Negl Trop Dis ; 17(11): e0011749, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019787

RESUMEN

BACKGROUND: Schistosomiasis is one of the most important neglected tropical infectious diseases to overcome and the primary cause of its pathogenesis is ectopic maturation of the parasite eggs. Uptake of cholesteryl ester from the host high-density lipoprotein (HDL) is a key in this process in Schistosoma japonicum and CD36-related protein (CD36RP) has been identified as the receptor for this reaction. Antibody against the extracellular domain of CD36RP (Ex160) efficiently blocked the HDL cholesteryl ester uptake and the egg embryonation in vitro. However, whether Ex160 immunization could efficiently raise proper antibody responses to sufficiently block HDL cholesteryl ester uptake and the egg embryonation to protect host in vivo is very interesting but unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, rabbits were immunized with the recombinant Ex160 peptide (rEx160) to evaluate its anti-pathogenic vaccine potential. Immunization with rEx160 induced consistent anti-Ex160 IgG antibody and significant reduction in development of the liver granulomatosis lesions associated with suppressed intrahepatic maturation of the schistosome eggs. The immunization with rEx160 rescued reduction of serum HDL by the infection without changing its size distribution, being consistent with interference of the HDL lipid uptake by the parasites or their eggs by antibody against Ex160 in in vitro culture. CONCLUSIONS/SIGNIFICANCE: The results demonstrated that vaccination strategy against nutritional supply pathway of the parasite is effective for reducing its pathogenesis.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Conejos , Esquistosomiasis Japónica/parasitología , Schistosoma japonicum/metabolismo , Lipoproteínas HDL , Vacunación
6.
medRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808806

RESUMEN

In underserved communities in New York City, uninsured adults encounter a greater risk of cardiovascular disease and diabetes. The Heart-to-Heart Community Outreach Program (H2H) is addressing these disparities by providing screenings for diabetes and other cardiovascular disease risk factors, fostering community engagement in translational research at our CTSC. Screening events are hosted in partnership with community faith-based institutions. Participants provide medical history, complete a survey, and receive individualized counseling by clinicians with referrals for follow-up care. The population served is disproportionately non-white, uninsured, with low-income, and underserved. The program empowers participants to make beneficial lifestyle changes using myriad strategies to reach those most in need. This required strong foundational program leadership, effective inter-institutional collaboration, and maintaining of community trust. Leveraging partnerships with faith-based institutions and community centers in at-risk NYC neighborhoods, H2H addresses the increasing burden of diabetes and cardiovascular disease risk factors in vulnerable individuals and provides a model for similar initiatives.

7.
PLoS Negl Trop Dis ; 17(5): e0011385, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37253066

RESUMEN

Schistosomiasis is a serious and neglected disease with a high prevalence in tropical and subtropical countries. The primary pathology of hepatic schistosomiasis caused by Schistosoma japonicum (S. japonicum) or Schistosoma mansoni (S. mansoni) infection is egg-induced granuloma and subsequent fibrosis in the liver. Activation of hepatic stellate cells (HSCs) is the central driver of liver fibrosis. Macrophages (Mφ), making up 30% of cells in hepatic granulomas, directly or indirectly regulate HSC activation by paracrine mechanisms, via secreting cytokines or chemokines. Currently, Mφ-derived extracellular vesicles (EVs) are broadly involved in cell communication with adjacent cell populations. However, whether Mφ-derived EVs could target neighboring HSCs to regulate their activation during schistosome infection remains largely unknown. Schistosome egg antigen (SEA) is considered to be the main pathogenic complex mixture involved in liver pathology. Here, we demonstrated that SEA induced Mφ to produce abundant extracellular vesicles, which directly activated HSCs by activating their autocrine TGF-ß1 signaling. Mechanistically, EVs derived from SEA-stimulated Mφ contained increased miR-33, which were transferred into HSCs and subsequently upregulated autocrine TGF-ß1 in HSCs through targeting and downregulating SOCS3 expression, thereby promoting HSC activation. Finally, we validated that EVs derived from SEA-stimulated Mφ utilized enclosed miR-33 to promote HSC activation and liver fibrosis in S. japonicum-infected mice. Overall, our study indicates that Mφ-derived EVs play important roles in the paracrine regulation of HSCs during the progression of hepatic schistosomiasis, representing a potential target for the prevention of liver fibrosis in hepatic schistosomiasis.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Schistosoma japonicum , Esquistosomiasis , Animales , Ratones , Factor de Crecimiento Transformador beta1 , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/patología , Esquistosomiasis/patología , Hígado/patología , Schistosoma japonicum/fisiología , MicroARNs/genética , MicroARNs/metabolismo
8.
Sci Rep ; 13(1): 772, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641540

RESUMEN

Seed density per silique (SDPS) and valid silique length (VSL) are two important yield-influencing traits in rapeseed. SDPS has a direct or indirect effect on rapeseed yield through its effect on seed per silique. In this study, a quantitative trait locus (QTL) for SDPS was detected on chromosome A09 using the QTL-seq approach and confirmed via linkage analysis in the mapping population obtained from 4263 × 3001 cross. Furthermore, one major QTL for SDPS (qSD.A9-1) was mapped to a 401.8 kb genomic interval between SSR markers Nys9A190 and Nys9A531. In the same genomic region, a QTL (qSL.A9) linked to VSL was also detected. The phenotypic variation of qSD.A9-1 and qSL.A9 was 53.1% and 47.6%, respectively. Results of the additive and dominant effects demonstrated that the expression of genes controlling SDPS and VSL were derived from a different parent in this population. Subsequently, we identified 56 genes that included 45 specific genes with exonic (splicing) variants. Further analysis identified specific genes containing mutations that may be related to seed density as well as silique length. These genes could be used for further studies to understand the details of these traits of rapeseed.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo/genética , Fenotipo , Brassica rapa/genética , Semillas/genética
9.
Front Plant Sci ; 13: 1004781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340380

RESUMEN

Rapeseed is the third leading source of edible oil in the world. Genic male sterility (GMS) lines provide crucial material for harnessing heterosis for rapeseed. GMS lines have been widely used successfully for rapeseed hybrid production. The physiological and molecular mechanism of pollen development in GMS lines of rapeseed (Brassica napus L.) need to be determined for the creation of hybrids and cultivation of new varieties. However, limited studies have focused on systematically mining genes that regulate the pollen development of GMS lines in B. napus. In the present study, to determine the stage at which pollen development begins to show abnormality in the GMS lines, we performed semi-thin section analysis of the anthers with five pollen development stages. The results indicated that the abnormal pollen development in DGMS lines might start at the meiotic stage, and abnormal pollen development in RGMS lines probably occurred before the tetrad stage. To investigate the critical genes and pathways involved in pollen development in GMS lines, we constructed and sequenced 24 transcriptome libraries for the flower buds from the fertile and sterile lines of two recessive GMS (RGMS) lines (6251AB and 6284AB) and two dominant GMS (DGMS) lines (4001AB and 4006AB). A total of 23,554 redundant DEGs with over two-fold change between sterile and fertile lines were obtained. A total of 346 DEGs were specifically related to DGMS, while 1,553 DEGs were specifically related to RGMS. A total of 1,545 DEGs were shared between DGMS and RGMS. And 253 transcription factors were found to be differentially expressed between the sterile and fertile lines of GMS. In addition, 6,099 DEGs possibly related to anther, pollen, and microspore development processes were identified. Many of these genes have been reported to be involved in anther and microspore developmental processes. Several DEGs were speculated to be key genes involved in the regulation of fertility. Three differentially expressed genes were randomly selected and their expression levels were verified by quantitative PCR (qRT-PCR). The results of qRT-PCR largely agreed with the transcriptome sequencing results. Our findings provide a global view of genes that are potentially involved in GMS occurrence. The expression profiles and function analysis of these DEGs were provided to expand our understanding of the complex molecular mechanism in pollen and sterility development in B. napus.

10.
Nat Commun ; 13(1): 6881, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371464

RESUMEN

Severe infection commonly results in immunosuppression, which leads to impaired pathogen clearance or increased secondary infection in both humans and animals. However, the exact mechanisms remain poorly understood. Here, we demonstrate that IL-33 results in immunosuppression by inducing thymic involution-associated naive T cell dysfunction with aberrant expression of aging-associated genes and impairs host control of infection in mouse disease models of schistosomiasis or sepsis. Furthermore, we illustrate that IL-33 triggers the excessive generation of medullary thymic epithelial cell (mTEC) IV (thymic tuft cells) in a Pou2f3-dependent manner, as a consequence, disturbs mTEC/cortical TEC (cTEC) compartment and causes thymic involution during severe infection. More importantly, IL-33 deficiency, the anti-IL-33 neutralizing antibody treatment, or IL-33 receptor ST2 deficient thymus transplantation rescues T cell immunity to better control infection in mice. Our findings not only uncover a link between severe infection-induced IL-33 and thymic involution-mediated naive T cell aging, but also suggest that targeting IL-33 or ST2 is a promising strategy to rejuvenate T cell immunity to better control severe infection.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Linfocitos T , Humanos , Ratones , Animales , Linfocitos T/fisiología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Timo , Células Epiteliales/metabolismo , Envejecimiento/fisiología , Senescencia Celular
11.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236544

RESUMEN

Due to the poor visibility of the deep-sea environment, acoustic signals are often collected and analyzed to explore the behavior of marine species. With the progress of underwater signal-acquisition technology, the amount of acoustic data obtained from the ocean has exceeded the limit that human can process manually, so designing efficient marine-mammal classification algorithms has become a research hotspot. In this paper, we design a classification model based on a multi-channel parallel structure, which can process multi-dimensional acoustic features extracted from audio samples, and fuse the prediction results of different channels through a trainable full connection layer. It uses transfer learning to obtain faster convergence speed, and introduces data augmentation to improve the classification accuracy. The k-fold cross-validation method was used to segment the data set to comprehensively evaluate the prediction accuracy and robustness of the model. The evaluation results showed that the model can achieve a mean accuracy of 95.21% while maintaining a standard deviation of 0.65%. There was excellent consistency in performance over multiple tests.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Acústica , Humanos , Sonido
12.
Am J Med Qual ; 37(4): 348-355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35353474

RESUMEN

Despite disproportionately higher rates of morbidity and mortality from COVID-19 among Black and Hispanic adults in the United States, ethnoracial disparities in vaccination rates emerged rapidly. The objective of this quality improvement study was to rapidly develop and implement an equity-focused community outreach intervention that facilitated COVID-19 vaccine appointments. Using the Plan-Do-Study-Act model, this multipronged, primary care-based outreach intervention developed call/recall systems that addressed vaccine hesitancy and facilitated real-time vaccine scheduling. Through 5058 calls to 2794 patients, 1519 patients were successfully reached. Of the 750 patients eligible for vaccine scheduling, 129 (17.2%) had a vaccine appointment scheduled by the caller and 72 (9.6%) indicated a plan to self-schedule. Low confidence in the vaccine was the most cited reason for declining assistance with a vaccine appointment. Primary care practices may wish to consider introducing similar outreach interventions in the future to address ethnoracial inequities in vaccination distribution.


Asunto(s)
COVID-19 , Vacunas , Adulto , COVID-19/prevención & control , Vacunas contra la COVID-19 , Relaciones Comunidad-Institución , Humanos , Estados Unidos , Vacunación
13.
Adv Clin Chem ; 106: 91-179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35152976

RESUMEN

Long noncoding RNAs (lncRNAs) are defined as noncoding RNA transcripts with a length greater than 200 nucleotides. Research over the last decade has made great strides in our understanding of lncRNAs, especially in the biology of their role in cancer. In this article, we will briefly discuss the biogenesis and characteristics of lncRNAs, then review their molecular and cellular functions in cancer by using prostate and breast cancer as examples. LncRNAs are abundant, diverse, and evolutionarily, less conserved than protein-coding genes. They are often expressed in a tumor and cell-specific manner. As a key epigenetic factor, lncRNAs can use a wide variety of molecular mechanisms to regulate gene expression at each step of the genetic information flow pathway. LncRNAs display widespread effects on cell behavior, tumor growth, and metastasis. They act intracellularly and extracellularly in an autocrine, paracrine and endocrine fashion. Increased understanding of lncRNA's role in cancer has facilitated the development of novel biomarkers for cancer diagnosis, led to greater understanding of cancer prognosis, enabled better prediction of therapeutic responses, and promoted identification of potential targets for cancer therapy.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Próstata , ARN Largo no Codificante/genética
14.
Sci Rep ; 11(1): 23382, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862452

RESUMEN

Rapeseed, a major oil crop in the world, is easily affected by low-temperature stress. A low temperature delays seed germination and increases seedling mortality, adversely affecting rapeseed growth and production. In the present study, a tolerant cultivar (Huyou21) was crossed with a susceptible genotype (3429) to develop a mapping population consisting of 574 F2 progenies and elucidate the genetic mechanisms of seed germination under low temperatures. Two quantitative trait loci (QTL) for low-temperature germination (LTG) were detected, one on chromosome A09 (named qLTGA9-1) and the other on chromosome C01 (named qLTGC1-1), using the QTL-seq approach and confirmed via linkage analysis in the mapping population. Further, qLTGA9-1 was mapped to a 341.86 kb interval between the SSR markers Nys9A212 and Nys9A215. In this region, 69 genes including six specific genes with moderate or high effect function variants were identified based on the Ningyou7 genome sequence. Meanwhile, qLTGC1-1 was mapped onto a 1.31 Mb interval between SSR markers Nys1C96 and Nys1C117. In this region, 133 genes including five specific genes with moderate effect function variants were identified. These specific genes within the two QTL could be used for further studies on cold tolerance and as targets in rapeseed breeding programs.


Asunto(s)
Brassica napus/fisiología , Mapeo Cromosómico/métodos , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Brassica napus/genética , Frío , Ligamiento Genético , Germinación , Secuenciación de Nucleótidos de Alto Rendimiento , Fitomejoramiento , Secuenciación Completa del Genoma
15.
BMC Plant Biol ; 21(1): 520, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753417

RESUMEN

BACKGROUND: Brassica napus is the third leading source of edible oil in the world. Genic male sterility (GMS) lines provide crucial material for harnessing heterosis for rapeseed. GMS lines have been used successfully for rapeseed hybrid production in China. MicroRNAs (miRNAs) play crucial regulatory roles in various plant growth, development, and stress response processes. However, reports on miRNAs that regulate the pollen development of GMS lines in B. napus are few. RESULTS: In this study, 12 small RNA and transcriptome libraries were constructed and sequenced for the flower buds from the fertile and sterile lines of two recessive GMS (RGMS) lines, namely, "6251AB" and "6284AB". At the same time, 12 small RNA and transcriptome libraries were also constructed and sequenced for the flower buds from the fertile and sterile lines of two dominant GMS (DGMS) lines, namely, "4001AB" and "4006AB". Based on the results, 46 known miRNAs, 27 novel miRNAs on the other arm of known pre-miRNAs, and 44 new conserved miRNAs were identified. Thirty-five pairs of novel miRNA-3p/miRNA-5p were found. Among all the identified miRNAs, fifteen differentially expressed miRNAs with over 1.5-fold change between flower buds of sterile and fertile lines were identified, including six differentially expressed miRNAs between "4001A" and "4001B", two differentially expressed miRNAs between "4006A" and "4006B", four differentially expressed miRNAs between "6251A" and "6251B", and ten differentially expressed miRNAs between "6284A" and "6284B". The correlation analysis of small RNA and transcriptome sequencing was conducted. And 257 candidate target genes were predicted for the 15 differentially expressed miRNAs. The results of 5' modified RACE indicated that BnaA09g48720D, BnaA09g11120D, and BnaCnng51960D were cleaved by bna-miR398a-3p, bna-miR158-3p and bna-miR159a, respectively. Among the differentially expressed miRNAs, miR159 was chosen to analyze its function. Overexpression of bna-miR159 in Arabidopsis resulted in decreased seed setting rate, and shortened siliques, illustrating that miR159 may regulate the fertility and silique development in rapeseed. CONCLUSIONS: Our findings provide an overview of miRNAs that are potentially involved in GMS and pollen development. New information on miRNAs and their related target genes are provided to exploit the GMS mechanism and reveal the miRNA networks in B. napus.


Asunto(s)
Brassica napus/genética , MicroARNs/fisiología , Infertilidad Vegetal/genética , Polen/genética , ARN de Planta/fisiología , Brassica napus/crecimiento & desarrollo , Biblioteca de Genes , Desarrollo de la Planta/genética , Transcriptoma
16.
PLoS Negl Trop Dis ; 15(8): e0009696, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34398890

RESUMEN

Schistosomiasis is a neglected tropical disease of public health concern. The most devastating pathology in schistosomiasis japonica and mansoni is mainly attributed to the egg-induced granulomatous response and secondary fibrosis in host liver, which may lead to portal hypertension or even death of the host. Schistosome eggs induce M2 macrophages-rich granulomas and these M2 macrophages play critical roles in the maintenance of granuloma and subsequent fibrosis. Reactive oxygen species (ROS), which are highly produced by stimulated macrophages during infection and necessary for the differentiation of M2 macrophages, are massively distributed around deposited eggs in the liver. However, whether ROS are induced by schistosome eggs to subsequently promote M2 macrophage differentiation, and the possible underlying mechanisms as well, remain to be clarified during S. japonicum infection. Herein, we observed that extensive expression of ROS in the liver of S. japonicum-infected mice. Injection of ROS inhibitor in infected mice resulted in reduced hepatic granulomatous responses and fibrosis. Further investigations revealed that inhibition of ROS production in S. japonicum-infected mice reduces the differentiation of M2, accompanied by increased M1 macrophage differentiation. Finally, we proved that S. japonicum egg antigens (SEA) induce a high level of ROS production via both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and mitochondria in macrophages. Our study may help to better understand the mechanism of schistosomiasis japonica-induced hepatic pathology and contribute to the development of potential therapeutic strategies by interfering with ROS production.


Asunto(s)
Hígado/patología , Macrófagos/citología , Óvulo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Schistosoma japonicum/fisiología , Esquistosomiasis Japónica/fisiopatología , Animales , Diferenciación Celular , Humanos , Hígado/metabolismo , Hígado/parasitología , Macrófagos/metabolismo , Macrófagos/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Schistosoma japonicum/genética , Esquistosomiasis Japónica/metabolismo , Esquistosomiasis Japónica/parasitología
17.
Gene ; 798: 145798, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34175391

RESUMEN

Rapeseed (Brassica napus L.) is an important oil crop with a huge genome. This study used next generation sequencing technology to develop SSR markers in rapeseed. A total of 213,876 sequence reads were obtained in 58.8 Mb. For these reads, 21,523 SSRs were recovered from 18,575 microsatellites sequences and 8,964 SSR primer pairs were identified. Di- and mono-nucleotides were the most abundant, accounting for 47.5% and 30.7% of all SSRs, respectively. A total of 8,776 SSRs were designed from contigs and 100 SSR primers were tested for validation of SSR locus amplification. Nearly all (94%) of the markers were found to produce clear amplicons and to be reproducible. For these markers, forty-three SSRs showed polymorphic bands in eight rapeseed accessions. Thirty-four SSRs were then applied to 78 rapeseed accessions from China to evaluate the genetic diversity. Result showed that the allele number varied from two to seven, with a mean value of 3.59. The effective allele number of ranged from 1.14 to 3.25, with an average of 2.09. The average values of observed heterozygosity and expected heterozygosity were 0.54 and 0.49, respectively. The Nei's gene diversity varied from 0.12 to 0.69, with a mean value of 0.48. Resulting of the markers testing showed that the identified genome-wide SSRs were useful in rapeseed genetic studies, including genetic diversity, QTL mapping and marker-assisted selection for breeding.


Asunto(s)
Brassica napus/genética , Marcadores Genéticos , Repeticiones de Microsatélite , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento
18.
Int J Gen Med ; 14: 1905-1910, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34045887

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disease that primarily affects joints. Interleukin-37 (IL-37) is an anti-inflammatory cytokine that is known to suppress immune response and inflammation. The objective of this study is to evaluate the correlation between level of IL-37 and RA progression using the disease activity score in 28 joints (DAS-28). METHODS: A total of 87 RA patients were separated into 4 groups based on the DAS28, referred to as the remission, mild, moderate and severe groups. 18 healthy volunteers were also included. Serum level of IL-37 and IL-37 mRNA expression level in peripheral blood mononuclear cells (PBMCs) in each individual participant as well as IL-37 mRNA expression level in synovial cells were assessed to explore their correlation with RA progression. RESULTS: Serum level of IL-37 and IL-37 mRNA expression levels in both PBMCs and synovial cells were all positively correlated with the severity of RA as reflected by the DAS28. Receiver operating characteristic (ROC) analysis revealed area under curve (AUC) values of 1, 0.5262 and 0.7789 for the three parameters. CONCLUSION: Our results suggest that serum IL-37 level and mRNA expression levels of IL-37 in PBMCs and synovial cells are correlated with the severity of RA in a Chinese population.

19.
Am J Transl Res ; 13(3): 1290-1306, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841657

RESUMEN

Peripheral nerve injury, a disease that affects 1 million people worldwide every year, occurs when peripheral nerves are destroyed by injury, systemic illness, infection, or an inherited disorder. Indeed, repair of damaged peripheral nerves is predominantly mediated by type 2 immune responses. Given that helminth parasites induce type 2 immune responses in hosts, we wondered whether helminths or helminth-derived molecules might have the potential to improve peripheral nerve repair. Here, we demonstrated that schistosome-derived SJMHE1 promoted peripheral myelin growth and functional regeneration via a macrophage-dependent mechanism and simultaneously increased the induction of M2 macrophages. Our findings highlight the therapeutic potential of schistosome-derived SJMHE1 for improving peripheral nerve repair.

20.
PLoS Pathog ; 17(3): e1009462, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33735306

RESUMEN

Infection with schistosome results in immunological changes that might influence the skeletal system by inducing immunological states affecting bone metabolism. We investigated the relationships between chronic schistosome infection and bone metabolism by using a mouse model of chronic schistosomiasis, affecting millions of humans worldwide. Results showed that schistosome infection resulted in aberrant osteoclast-mediated bone loss, which was accompanied with an increased level of receptor activator of nuclear factor-κB (NF-κB) Ligand (RANKL) and decreased level of osteoprotegerin (OPG). The blockade of RANKL by the anti-RANKL antibody could prevent bone loss in the context of schistosome infection. Meanwhile, both B cells and CD4+ T cells, particularly follicular helper T (Tfh) cell subset, were the important cellular sources of RANKL during schistosome infection. These results highlight the risk of bone loss in schistosome-infected patients and the potential benefit of coupling bone therapy with anti-schistosome treatment.


Asunto(s)
Resorción Ósea/metabolismo , Resorción Ósea/patología , Ligando RANK/metabolismo , Esquistosomiasis Japónica/complicaciones , Animales , Linfocitos B/metabolismo , Ratones , Schistosoma japonicum , Células T Auxiliares Foliculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...